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What is Passive Remote Sensing?
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Really, what is passive remote sensing?
• Remotely measured electromagnetic radiation where

– the source is not controlled.

• Examples:
– Visible and infrared imaging. 
– Backscattered solar ultraviolet.
– Microwave and infrared emission spectra.
– Solar occultation spectra.

• Two general types of space-based remote sensing:
– Nadir (downward looking).
– Limb-viewing.

• Atmospheric remote sensing often means inferring vertical 
structure, called ‘remote sounding’.3



The Fundamental Approach:
Use the Radiative Transfer Equation to 

Understand the Atmosphere
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!I (ν i ) = B(ν i,TS )ε(ν i )τ (ν i, pS )+ B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p+...

Observed outgoing radiance

Surface contribution Atmospheric contribution

• We know observed radiance.

• We want internal information like Ts, T(p), etc.



Two Basic Aspects of Remote Sounding

1. The forward problem:  given a known internal state 
(surface, atmosphere, clouds), what is the emitted 
radiance?

2. The retrieval or inverse problem:  what internal state 
explains observed radiances?  (Impossible without a 
forward model.)

Inverse problems are found in many branches of geophysics, 
astrophysics, and medicine.  Most infer physical state from 
propagating waves.
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A Nadir Sounding Example:
The AIRS/AMSU Suite

1. AMSU footprint, 45 km across 
at nadir, contains 9 AIRS 
spectra
– THIS IS THE RETRIEVAL 

GRANULARITY.

2. Viewing swath 30 AMSU 
footprints or ~1650 km wide.

3. The result:  324,000 retrievals 
per day (over a 15 year record).

AIRS = Atmospheric Infrared Sounder
AMSU = Advanced Microwave Sounding Unit
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22 Sep 2002, 0630 UT, night time near 25 N and 73 W

1 AMSU, 9 HSB Spectra 9 AIRS Spectra

One Set of AIRS Suite Spectra in the Atlantic
We now have about 109 in a sixteen year record

(about 1010 IR spectra)
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AIRS is One Example from the A-Train:
An international commitment to climate science
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About Retrieved Quantities
Retrieved quantities are inferences (estimates) of the true state of the 
atmosphere.

Some basic challenges:

1. Developing a reliable forward model.
– This usually means detailed spectroscopic knowledge.

2. Implementing a retrieval algorithm.

3. ‘Validation’ of retrievals against other measurements.

4. Interpretation of resulting very large data sets.
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22 Sep 2002, 0630 UT, night time near 25 N and 73 W

1 AMSU, 9 HSB Spectra 9 AIRS Spectra

One Set of AIRS Suite Spectra in the Atlantic
We now have about 109 in a sixteen year record

(about 1010 IR spectra)
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Retrieved Cloud-Cleared Spectrum
and differences from radiances in previous slide

1 Cloud-Cleared Spectrum CC Spectrum – 9 AIRS Spectra
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Retrieved Geophysical Quantities
(from the cloud cleared radiances just shown)

whoops
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The Radiative Transfer Equation 
and Weighting Functions
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!I (ν i ) = B(ν i,TS )ε(ν i )τ (ν i, pS )+ B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p+...

Observed radiance

Surface contribution
Atmospheric contribution

Weighting functions relate internal 
state and calculated outgoing radiance



Nadir Weighting Functions
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∂τ (ν i, p)
∂ ln p

The functions show the contribution an 
altitude makes to calculated radiance.

Also called:

• Adjoints

• Jacobians

Note:  Fine scale structure is 
retrieved by deconvolving 
weighting functions.

Weighting Function =
Vertical Derivative of
Optical Depth

Chahine, 1970.



Limb Viewing Geometry and 
Weighting Functions
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From Gordley and Russell, 
1981, Applied Optics.



Limb Viewing Characteristics

Good:
• The limb is viewed against cold space

– high signal-to-noise
– no surface term in the retrieval.

• Very sharp weighting functions
– give high vertical resolution.

Not so good:
• Very sensitive to clouds.

– Makes limb sounding most useful in middle troposphere and up.

Note:  GPS limb occultations can be inverted to stable, very high 
resolution, cloud-free profiles.  But, not a passive technique, also 
temperature-water vapor ambiguity for T > 250 K.
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22 Sep 2002, 0630 UT, night time near 25 N and 73 W

1 AMSU, 9 HSB Spectra 9 AIRS Spectra

How Much Information?
Retrieval algorithms extract the 
information content of spectra.
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An Admission:
This ‘equation’ is not an equation.
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!I (ν i ) ≅ B(ν i,TS )ε(ν i )τ (ν i, pS )+ B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p+...

Observed radiance

Calculated surface contribution
Calculated atmospheric contribution
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ε =min !I (ν i )−B(ν i,TS )ε(ν i )τ (ν i, pS )− B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p

Observed radiance

Calculated surface contribution Calculated atmospheric 
contribution

• We know observed radiance
• Match these with hypothesized internal information like Ts, T(p), etc.

- Calculation requires a forward model.
- Need to choose a cost function for the minimization, as here:

Retrieving internal parameters is a 
minimization problem.



• Advantages
– Fast.
– Simple.

• Disadvantages
– Weak mathematical or physical justification.
– Poor uncertainty propagation.
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One Approach: Statistical Retrievals

Tabulate simulated radiances for a wide range of conditions, 
then regress the observed radiances onto known states.



Another Approach:
Physical Relaxation

Iterate this equation until    is within acceptable limits.

• Advantages:
– Some physical justification
– Computationally fast.

• Disadvantages
– Physical justification is ad hoc.
– Solution may have multiple minima.
– Poor uncertainty propagation.
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ε

ε =min !I (ν i )−B(ν i,TS )ε(ν i )τ (ν i, pS )− B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p



Yet Another Approach:  Optimal Estimation 
(Bayesian) Methods
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• Advantages:
– Good mathematical foundation.
– Incorporates prior information; explicitly handles error 

propagation and multiple minima.

• Disadvantages
– Computationally expensive.
– Require prior information, including a climatology.
– ‘Some people treat it like a religion.’  -Anonymous JPLer

Optimal estimation is becoming the community standard, though 
not all instruments use it (e. g. AIRS currently uses a combined 
statistical and relaxation method).



Optimal Estimation:
Generalize the Inverse Problem
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!I (ν i ) ≅ B(ν i,TS )ε(ν i )τ (ν i, pS )+ B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p

Reduce this:

to this:

y = F(x)
Where

x = vector of retrieved quantities [Ts, T(p), etc.].
y = vector of observed radiances.
F = forward (radiance) model.

We want the inverse:

x = F−1(y)



Optimal Estimation in a nutshell

Minimize this cost function:

ε =min
x

y−F(x)
Sn
−1

2
+ x− xc Λ

2( )
Where
x = retrieved state vector
y = observed radiance
F(x) = forward modeled radiance
Sn

-1 =  noise covariance matrix
xc = first guess
Λ= constraint matrix.

Slide courtesy Bill Irion, JPL
‘Shamelessly cribbed from Worden et al., JGR, 109, doi:10.1029/2004JD004522, 2004’ -Irion
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An Aside

ε =min !I (ν i )−B(ν i,TS )ε(ν i )τ (ν i, pS )− B[
ln pS

ln pTop

∫ ν i,T (p)]
∂τ (ν i, p)
∂ ln p

d ln p

• The cost function is a matter of taste.
• Two examples shown today:

• This is analogous to a choice of statistical characterization
– Mean, mode, or median?
– Standard deviation or interquartile range?
– Chocolate or vanilla?
– …

ε =min
x

y−F(x)
Sn
−1

2
+ x− xc Λ

2( )
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Jacobians (Weighting Functions) and Gain

€ 

G =
∂ˆ x 
∂F

= KTSn
-1K + Λ( )

−1
KTSn

-1

K =
∂F
∂x

 same as∂τ (ν i, p)
∂ ln p

Jacobian - relates change in forward model F to change in “true” state, x.

Gain - relates change in retrieved state, x̂, to forward model radiance, F.

Sn is the noise term [nnT ], and Λ is the constraint matrix (usually prior covariance-1).

‘Shamelessly cribbed from Worden et al., JGR, 109, doi:10.1029/2004JD004522, 2004’ -Irion
Slide courtesy Bill Irion, JPL26



Averaging Kernels and Information Content

€ 

A =  ∂
ˆ x 
∂x

 =  ∂
ˆ x 
∂F

∂F
∂x

=  GK
  

€ 

Averaging kernel -  relates change in retrieved state, ˆ x , to true state, x.

€ 

ˆ x  =  xa +  A(x -  xa ) + Gn

Final retrieval, from the averaging kernel, smooths the difference
between the true state, x, and the a priori, xa.

The trace of the averaging kernel matrix is the 
number of degrees of freedom in the retrieval.

‘Shamelessly cribbed from Worden et al., JGR, 109, doi:10.1029/2004JD004522, 2004’ -Irion
Slide courtesy Bill Irion, JPL27



AIRS Averaging Kernels
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From:  Maddy and Barnet (2008), Vertical resolution 
estimates in version 5 of AIRS operational 
retrievals, TGARS.

Compare weighting functions



Finally:  The Null Space

• The set of unobservable states.  Examples:
– Vertical structure smaller than averaging kernel 

scales.
– Scenes obscured by clouds (infrared) or 

precipitation (microwave).

Understanding the null space is a fundamental 
challenge of atmospheric remote sensing.  
Auxiliary information is needed to define it.

29



Some Thoughts on the Future 

• Interpretation of retrieved quantities remains a challenge
– Though less daunting than observed (cloudy) radiances.
– We have a lot of both radiances and retrievals.

• Retrieval methodologies are still relatively immature
– Statistical and relaxation methods are near their limit of usefulness 

for characterizing errors.
– Optimal estimation methods have not been widely applied to the 

very large data sets from NASA facility instruments (MODIS and 
AIRS).

– Retrieving cloud state with other properties is the main challenge.

• Model assimilation of cloud-affected radiances for T and q is a BIG 
challenge.
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Supplementary Slides
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Spectral Bands Determined by Radiative 
Transfer Physics and Technology

• Visible
– Very high horizontal resolution.
– Low atmospheric opacities => applicable to aerosol, clouds and 

surface.
– Calibration to better than 10% is difficult.

• Infrared
– Moderate horizontal resolution (~10 km; higher possible).
– High spectral resolution.
– Can be calibrated to ~0.1 K RMSE brightness temperature.
– Mixed atmospheric opacities => information about vertical 

structure, clouds, and surface.
– Cannot sound through cloud optical depths ≥1.
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Spectral Bands Determined by
Radiative Transfer Physics and 

Technology (continued)

• Microwave
– Mixed atmospheric opacities (like infrared).
– Small cloud opacities

• Can sound into non-precipitating clouds.
– Lower spectral and spatial resolution because of 

receiver and antenna costs
• Limited spectral resolution translates to limited vertical 

information.

Note:  Resolution and sensitivity for all wavelengths 
are closely tied to the observational null space.
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